
Individual Part
Problem A.
Let P be a polynomial of degree less than n. Show that

n∑
k=0

(−1)k
(
n

k

)
P (k) = 0 .

Problem C.
Let f : R → R be twice differentiable at x = 0 (i.e. f is differentiable in some neighbourhood
of 0, but f ′ does not need to be differentiable – or even continuous – outside x = 0), and let

g(x) =


f ′(0), for x = 0

f(x)− f(0)

x
, for x 6= 0.

Show that function g is differentiable at x = 0 and calculate g′(0).

Problem E.
Find all differentiable functions f : R→ R satisfying both following equations for all x, y ∈ R

(I) f(x− y)− f(x+ y) = 2 f(x+ 1) f(y + 1);

(II) f(x)2 + f(x+ 1)2 = 1.

Problem G.
Let A be a complex matrix of dimension d×d. Assume that there exists a positive integer n∈N
such that

A2n +An + 2nI = 0,

where I is the identity matrix. Prove that A is diagonalizable.

Problem P.
Let n be a fixed positive integer. Alice plays the following game. She putsm perfect, symmetric
coins into the game. Then she tosses all of them. The bank collects all those with “tail”, and
doubles the remaining coins (those with “head”). The process then repeats until either all the
coins show “tail”, or Alice has made n tosses. The final gain is the number of remaining coins
(i.e. the doubled number of “heads” after the last toss) minus the number of coins Alice put
into the game at the beginning.
Find the expected value of Alice’s gain.



Team Part
Problem A.1.
LetG be a group with center Z(G). Prove that

∣∣∣H/Z(H)

∣∣∣ 6 ∣∣∣G/Z(G)

∣∣∣ for every subgroupH< G.

Show moreover that if G/Z(G) is finite then the equality holds iff G = HZ(G).

Problem A.2.
Billy the beetle walks along the edges of the cube. When it reaches a vertex, it continues along
a randomly chosen one of the other two edges emerging from that vertex.
Calculate the number of all distinct paths the beetle can take to return to the starting point
for the first time in 2n steps.

Problem C.1.
Let fn : [0, 1]→ R be given by the formula

fn(x) =
1

n+ 1

(
1 +

x

1

)
·
(

1 +
x

2

)
· . . . ·

(
1 +

x

n

)
for all n ∈ N and x ∈ [0, 1]. Show that the sequence (fn) converges uniformly on the interval
[0, x] for each 0 < x < 1. Find the pointwise limit of the sequence of functions.

Problem C.2.

Calculate the value of the integral
∞∫
0

e−x
2

cosx2 dx .

Problem E.1.
Let n∈N, n>2 and a1, . . . , an be positive real numbers such that a1 a2 · · · an = 1. Show that

n∑
k=1

ln(ak)

1 + a2k
6 0.

Problem E.2.
Let n>2 be an integer and x1, . . . , xn distinct real numbers. Express in the simplest form the
sum

n∑
i=1

xni∏
j 6=i

(xi − xj)
.

Problem G.1.
Let A,B,C,D be four different points on a straight line, in that order. Show that there exists
a square such that two of these points lie on the sides of the square, and two other points lie
on the extensions of two other sides of the square (see figure below).
Discuss the existence and number of different solutions.
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Problem G.2.
Let n∈N, n> 1. Let Xn be the vector space generated by the set of all permutation matrices
in the spaceMn×n of all n×n real matrices. Find the dimension of the space Xn.
Remark
For a given permutation σ of the set {1, . . . , n}, the permutation matrix Aσ = [ak,m] ∈ Mn×n is
defined by the formula

ak,m =

{
1 if σ(k) = m;
0 if σ(k) 6= m,

for all 1 6 k,m 6 n.

Problem P.1.
Find all n∈N, n>2 for which there exist Lebesgue measurable subsets A1, . . . , An of [0, 1] such
that

(1) λ(Ak) = λ(A1) > 0 for every 1 6 k 6 n and

(2)
n∑
k=1

λ(Ak) =
∑

16j<k6n

λ(Aj ∩Ak)

where λ is the Lebesgue measure on [0, 1].

Problem P.2.
In a volleyball match, each ball is served by one team and ends with one team winning one
point. The next ball is served by the team which won the previous point. Typically, the proba-
bility p of the serving team to win a point is different (smaller) than to lose a point. We assume
that the results of each ball are independent. A set ends when one team has at least 25 points
and at least 2 points more than the other team.
At somemoment the score is 24:22 for the teamwhich won the last point. What is the expected
final number of points of the team which will be victorious in this set?



Solutions
Problem A.
Let n be a positive integer and P any polynomial of degree less than n. Show that

n∑
k=0

(−1)k
(
n

k

)
P (k) = 0 .

Solution 1.:
We will show that

n∑
k=0

(−1)k
(
n

k

)
kj = 0

for all j = 1, 2, . . . , n− 1. The solution follows directly from this fact.
Let

f0(x) =

n∑
k=0

(
n

k

)
(−x)k = (1− x)n ,

and let fk(x) = x · f ′k−1(x) for k = 1, 2, . . . , n. It is easy to see that

fk(x) =

n∑
j=0

jk
(
n

j

)
(−x)j ,

for all k ≥ 1. As 1 is the zero of the multiplicity n of the polynomial function f0, the number 1
is also a zero of every function fk for k = 1, 2, . . . , n− 1. This means that

0 = fk(1) =

n∑
j=0

(−1)j
(
n

j

)
jk = 0 .

2

Solution 2.:
Let ∆ be the difference operator ∆(f)(x) = f(x+ 1)−f(x). The operator ∆ clearly reduces the
degree of a polynomial by 1, so ∆n(f) = 0 if f is a polynomial of degree less than n.
Now let E be the shift operator E(f)(x) = x+1 and let I denote the identity operator I(f) = f .
Then we have

0 = ∆n(f)(0) = (E − I)n(f)(0) =
∑
k

(
n

k

)
(−1)n−kEk(f)(0) =

∑
k

(
n

k

)
(−1)n−kf(k)

which is equivalent to the desired equation multiplied by (−1)n. 2

Solution 3.:
We will proceed by induction with respect to the degree of the polynomial d = degP .
Case d = 0 means P is constant, i.e. P (x) = C for all x. Hence

n∑
k=0

(−1)k
(
n

k

)
P (k) = C

n∑
k=0

(−1)k
(
n

k

)
= C(1− 1)n = 0

for all n ≥ 1.
Let us now assume that the equality holds for all polynomials of the degree less than D. Let
now d = degP = D ≥ 1. We have

n∑
k=0

(−1)k
(
n

k

)
P (k) =

n∑
k=0

(−1)k

((
n− 1

k − 1

)
+

(
n− 1

k

))
P (k)

=

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
P (k + 1) +

n−1∑
k=0

(−1)k
(
n− 1

k

)
P (k)

=

n−1∑
k=0

(−1)k
(
n− 1

k

)(
P (k)− P (k + 1)

)
= 0

by the induction hypothesis, since the degree of the polynomialQ(x) = P (x)−P (x+1) is equal
to d− 1 < D. 2



Problem C.
Let f : R → R be twice differentiable at x = 0 (i.e. f is differentiable on some neighbourhood
of 0, but f ′ needs to be continuous – and differentiable – only at 0), and let

g(x) =


f ′(0), x = 0

f(x)− f(0)

x
, x 6= 0.

Show that function g is differentiable at x = 0 and calculate g′(0).

Solution 1.:
Let ε > 0 and let δ > 0 be such that

∣∣∣f ′(x)− f ′(0)

x
− f ′′(0)

∣∣∣ < ε for |x| < δ.
Let now fix x and let xk = k

nx for k = 0, 1, . . . , n. We have xk − xk−1 = 1
nx, so

g(x)− g(0)

x
=

1

x

(
f(x)− f(0)

x
− f ′(0)

)
=

1

x

( n∑
k=1

f(xk)− f(xk−1)

x
− f ′(0)

)

=
1

x

n∑
k=1

1

n

(
f(xk)− f(xk−1)

xk − xk−1
− f ′(0)

)
=

1

nx

n∑
k=1

(
f ′(ξk)− f ′(0)

)
=

1

n

n∑
k=1

ξk
x
· f
′(ξk)− f ′(0)

ξk

for some ξk in between xk and xk−1, by Lagrange’s Mean Value Theorem. It follows that
k − 1

n
=
xk−1
x

<
ξk
x
<
xk
x

=
k

n
, hence

n(n− 1)

2n2
=

1

n

n−1∑
k=0

k

n
<

1

n

n∑
k=1

ξk
x
<

1

n

n∑
k=1

k

n
=
n(n+ 1)

2n2
.

Thus the series 1
n

n∑
k=1

ξk
x tends to 1

2 as n→ +∞.

Now if |x| < δ then
f ′′(0)− ε < f ′(ξ)− f ′(0)

ξ
< f ′′(0) + ε

for all |ξ| < |x|. Hence

f ′′(0)− ε
n

n∑
k=1

ξk
x
<
g(x)− g(0)

x
=

1

n

n∑
k=1

ξk
x
· f
′(ξk)− f ′(0)

ξk
<
f ′′(0) + ε

n

n∑
k=1

ξk
x
.

Passing with n to infinity gives 1

2
f ′′(0)− ε

2
<
g(x)− g(0)

x
<

1

2
f ′′(0) +

ε

2
, which shows that

lim
x→0

g(x)− g(0)

x
=

1

2
f ′′(0).

Remark
The solution can be written in a simpler form with uses of Landau’s little o symbol. We have
f ′(x)− f ′(0)

x
= f ′′(0) + ox(1), as x→ 0. Thus

g(x)− g(0)

x
= · · · = 1

n

n∑
k=1

ξk
x
·f
′(ξk)− f ′(0)

ξk
=
f ′′(0) + ox(1)

n

n∑
k=1

ξk
x

=
(
f ′′(0)+ox(1)

)(1

2
+on(1)

)
,

2

Solution 2.:
Let us expand the function f in Taylor series at x = 0 with the remainder in Peano’s form

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 + o(x2),

where o is Landau’s little “o” symbol as x → 0. Thus g(x) = f ′(0) + f ′′(0)
2 x + o(x) for x 6= 0,

which gives
g(x)− g(0)

x
=
f ′′(0)

2
+ o(1)

x→0−→ f ′′(0)

2
.

2



Problem E.
Find all differentiable functions f : R→ R satisfying the following equations for all x, y ∈ R

(I) f(x− y)− f(x+ y) = 2 f(x+ 1) f(y + 1);

(II) f(x)2 + f(x+ 1)2 = 1.

Solution:
The solution are all functions of the form cos

(2k + 1

2
πx
)
for k ∈ Z. We proceed as follows.

We can see from (II) that f cannot be equal to 0 everywhere. Putting now y = 0 gives

f(x)− f(x) = 0 = 2 f(x+ 1) f(1)

for all x, hence f(1) = 0, and putting x = 0 leads to

f(−y)− f(y) = 2 f(1) f(y + 1) = 0

for all y, which shows that f is even. Finaly substituting y → −y gives

f(x+ y)− f(x− y) = 2 f(x+ 1) f(−y + 1) = 2 f(x+ 1) f(y − 1), (22.1)

hence
2 f(x+ 1) f(y − 1) = −2 f(x+ 1) f(y + 1)

for all x and y. This means that f(y + 1) = −f(y − 1) for all y ∈ R, or equivalently

f(x+ 2) = −f(x) for all x ∈ R. (22.2)

Dividing (22.1) by 2y gives

f(x+ y)− f(x− y)

2y
= 2 f(x+ 1)

f(y − 1)

2y
= f(x+ 1)

f(y − 1)− f(−1)

y
,

as f(−1) = f(1) = 0, which tends to

f ′(x) = f ′(−1) f(x+ 1) (22.3)

for all x as y → 0. This show that f ′ is continuous and differentiable, hence f is smooth
(i.e. infinitely differentiable). Differetianting (22.3) and combining it with (22.2) gives the
differential equation for f

f ′′(x) = −f ′(−1)2 f(x),

which is known to have its only solutions of the form

f(x) = A cos(ωx) +B sin(ωx),

with A,B ∈ R and ω = ±f ′(−1).
We have B = 0 as f is even, and ω = kπ + π

2 = 2k+1
2 π as f(1) = 0. Finaly we check that all

functions cos
(2k + 1

2
πx
)
for k ∈ Z satisfy both equations (I) and (II). 2



Problem G.
Let A be a complex matrix of dimension d×d. Assume that there exists a positive integer n∈N
such that

A2n +An + 2nI = 0,

where I is the identity matrix. Prove that A is diagonalizable.

Solution:
Let σ(A) be a spectrum of A and let λ ∈ σ(A). Then there exists a nonzero vector vλ ∈ Cd
such that Avλ = λvλ. Since A2n +An + 2nI = 0, it follows that

(λ2n + λn + 2n)vλ = 0 =⇒ λ2n + λn + 2n = 0.

Let
p(x) = x2n + xn + 2n.

Then
p(A) = A2n +An + 2nI = 0.

Moreover, one has
p′(x) = 2nx2n−1 + nxn−1 = nxn−1(2xn + 1).

Thus the polynomials p(x) and p′(x) do not have common roots, which implies that all the roots
of p(x) are distinct. Let mA(x) be the minimal polynomial of A. Since p(A) = 0, it follows that
mA(x) divides the polynomial p(x) (we are using the fact that the minimal polynomial of A
divides any polynomial w(x) verifying the property w(A) = 0). Thus all roots of mA(x) are
pairwise different. Finally, it suffices to use the fact that a matrix A is diagonalizable if and
only if the minimal polynomial mA(x) has no repeated roots. 2



Problem P.
Let n be a fixed positive integer. Alice plays the following game. She putsm perfect, symmetric
coins into the game. Then she tosses all of them. The bank collects all those with “tail”, and
doubles the remaining coins (those with “head”). The process then repeats until either all the
coins show “tail”, or Alice has made n tosses. The final gain is the number of remaining coins
(i.e. the doubled number of “heads” after the last toss) minus the number of coins Alice put
into the game at the beginning..
Find the expected value of Alice’s gain.

Solution:
Let En be the expected value of the number of “heads” after the last toss if we start the game
with one coin. The expected value of Alice’s winning then is equal to m(2En − 1), as the bank
independently pays out 2En coins for each one put into the game, from which the coin put in
at the beginning must be subtracted.
If n = 1 the game ends after the first toss. So E1 = 1

2 · 0 + 1
2 · 1 = 1

2 . On the other hand, in the
n+1-tosses game, after the first toss we either lose or continue with two coins in the n-tosses
game. Hence we get the recursion En+1 = 1

2 · 0 + 1
2 · 2En = En = 1

2 . So the expected value of
Alice’s winning is equal to

m(2En − 1) = m
(

2 · 1

2
− 1
)

= 0 .

2

Solution 2.:
Let G(m,n) denote Alice’s gain. Then of course G(m,n) = mG(1, n). Moreover

G(1, n) =
1

2
· (−1) +

1

2
·
(
1 +G(2, n− 2)

)
= G(1, n− 2) = · · · = 0 ,

hence G(m,n) = 0. 2



Problem A.1.
LetG be a group with center Z(G). Prove that

∣∣∣H/Z(H)

∣∣∣ 6 ∣∣∣G/Z(G)

∣∣∣ for every subgroupH< G.

Show moreover that if G/Z(G) is finite then the equality holds iff G = HZ(G).

Solution 1.:
Let Inn(G) denote the set of inner automorphisms of G, i.e.

Inn(G) =
{
φ : ∃y∈G∀x∈G φ(x) = y−1xy

}
.

and let g : G → Inn(G) be defined as g(g)(x) = g−1xg. We have g ∈ ker g iff g(g)(x) = x, which
is equivalent to xg = gx, for all x ∈ G. Hence ker g = Z(G) and

Inn(G) ' G/Z(G) , (25.1)

by the first isomorphism theorem. The above formulas hold of course for any group.
Let nowH< G, i.e. letH be a subgroup of G. Any inner automorphism of the subgroupH can
be extended to an inner automorphism of the whole group G, so

∣∣ Inn(H)
∣∣ 6 ∣∣ Inn(G)

∣∣. Hence
the inequality in question follows from (25.1).
Let us now assume that G/Z(G) is finite. Since HZ(G) < G and H∩ Z(G) < Z(H) we have the
following sequence

G/Z(G) > HZ(G)/Z(G) ' H/H∩ Z(G)
f−→ H/Z(H) ,

where f is epimorphism (i.e. surjective homomorphism) given by f
(
h(H∩ Z(G))

)
= hZ(H) (it

does not depend of the representative h). Hence if
∣∣∣G/Z(G)

∣∣∣ =
∣∣∣H/Z(H)

∣∣∣ then ∣∣∣G/Z(G)

∣∣∣ =∣∣∣HZ(G)/Z(G)

∣∣∣, so from the finiteness of the number of layers Z(G) follows the equality G =

HZ(G).
On the other hand, if G = HZ(G), then for all g ∈ G there exists an h ∈ H such that gh−1 ∈
Z(G). Thus gh−1x = xgh−1, i.e. g−1xg = hxh−1 for all x ∈ G. This equality shows that every
inner automorphism of G can be uniquely determined by an inner automorphism of H, hence
Inn(H) ' Inn(G), which is equivalent to H/Z(H) ' G/Z(G) , so

∣∣∣G/Z(G)

∣∣∣ =
∣∣∣H/Z(H)

∣∣∣ . 2

Remark
The finitness of

∣∣∣G/Z(G)

∣∣∣ is needed only for the implication∣∣∣G/Z(G)

∣∣∣ =
∣∣∣H/Z(H)

∣∣∣ ⇒ G = HZ(G) .

Solution 2.:
Two elements in H are equal in G/Z(G) if there exists a g in Z(G) such that h1g = h2, but
this element g is clearly an element of H and as an element of H and Z(G) clearly an element
of Z(H). So h1 and h2 are already the same in G/Z(H).
Therefore, we don’t lose anything. The only way to have equality is the ability to choose a rep-
resentative in H for each class which is easily equivalent to the desired condition G = HZ(G).
2



Problem A.2.
Billy the beetle walks along the edge of the cube. When it reaches a vertex, it continues along
a randomly chosen one of the other two edges emerging from that vertex.
Calculate the number of all the different paths the beetle can take to return to the starting
point for the first time in 2n steps.

Solution 1.:
We assume that vertices of a unit cube have coordinates: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1). Let us divide the vertices into four sets according to the
sum of the coordinate values S0, . . . , S3. So there are no direct connection between vertices in
the same set, moreover sets S0 and S3 contain only one vertex (exactly the opposite vertices).
Let now Pn(i→j) denote the number of paths of length n starting at (0, 0, 0) and in the last step
going from a vertex in Si to a vertex in Sj . Thus, the value we are looking for is cn = P2n(1→0).
Moreover we can assume that the beetle stops when it reaches the starting point before 2n
steps, so we discard these paths since we only count those in which it returns for the first time
in exactly 2n steps. Hence Pn(0→1) = 0 for all n ≥ 2, therefore we take as the initial condition
P2(1→2) = 6.
Thus the system of equations describing the number of paths is as follows:

Pn+1(1→0) = Pn(2→1), P2(1→0) = 0,

Pn+1(1→2) = Pn(2→1), P2(1→2) = 6,

Pn+1(2→1) = 2Pn(3→2) + Pn(1→2), P2(2→1) = 0,

Pn+1(2→3) = Pn(1→2), P2(2→3) = 0,

Pn+1(3→2) = 2Pn(2→3), P2(3→2) = 0.

So

Pn+2(1→0) = Pn+2(1→2) =Pn+1(2→1) = 2Pn(3→2) + Pn(1→2) = 4Pn−1(2→3) + Pn(1→2)

= 4Pn−2(1→2) + Pn(1→2) = Pn(1→0) + 4Pn−2(1→0),

which gives cn+1 = cn + 4cn−1 with the initial conditions c1 = 0, c2 = 6. The characteristic
equation 0 = λ2 − λ − 4 has two solutions λ+ = 1+

√
17

2 and λ− = 1−
√
17

2 . Hence puting
cn = a+λ

n−1
+ + a−λ

n−1
− into the initial conditions gives a+ = −a− = 6√

17
, so finaly

P2n(1→0) = cn =
6√
17

(1 +
√

17 )n−1 − (1−
√

17 )n−1

2n−1
.

2

Solution 2.:
Denote the vertices of a unit cube as in solution 1. Let us divide the vertices into two sets:
So and S×, with So =

{
(0, 0, 0), (1, 1, 1)

}
. So there are no direct connection between vertices

inside So. Moreover the vertex (0, 0, 0) can be reached only in even number of steps and the
vertex (1, 1, 1) only in odd number of steps. Hence our goal is to calculate all paths of the
length 2n, starting at (0, 0, 0) and moving from S× to So in the last step.
Let pn(i→ j) denote the probability that a path of the length n starting at (0, 0, 0) ends with
the move from Si to Sj . As the number of all paths of the length n is equal to 3 · 2n−1 (at first
step the beetle has three possibilities, and then on every other step only two), the number we
are looking for is equal to 3 · 22n−1 · p2n(×→ ◦).
We have of course pn(◦ → ◦) + pn(◦ →×) + pn(×→×) + pn(×→ ◦) = 1. We assume moreover
that the beetle stops when it reaches the starting point. The assumptions of the problem give
the initial probabilities p1(◦ →×) = p2(×→×) = 1 and the following equations of transition

pn+1(×→ ◦) =
1

2
pn(×→×),

pn+1(×→×) =
1

2
pn(×→×) + pn(◦ →×),

p2n(◦ →×) = p2n−1(×→ ◦) & p2n+1(◦ →×) = 0,

p2n(◦ → ◦) = p2n−1(◦ → ◦) & p2n+1(◦ → ◦) = p2n(◦ → ◦) + p2n(×→ ◦).



Thus

p2n+1(×→×) =
1

2
p2n(×→×) + p2n(◦ →×) =

1

2
p2n(×→×) + p2n−1(×→ ◦)

=
1

2
p2n(×→×) +

1

2
p2n−2(×→×)

p2n+2(×→×) =
1

2
p2n+1(×→×) + p2n+1(◦ →×) =

1

2
p2n+1(×→×),

so

p2n+3(×→×) =
1

2
p2n+2(×→×) +

1

2
p2n(×→×) =

1

4
p2n+1(×→×) +

1

4
p2n−1(×→×)

and hence

p2n+4(×→ ◦) =
1

4
p2n+2(×→ ◦) +

1

4
p2n−1(×→ ◦)

Let Pn = p2n(×→ ◦), so we have to solve 4Pn+2 = Pn+1 +Pn with the initial conditions P1 = 0,
P2 = 1

4 . The characteristic equation 0 = 4λ2 − λ − 1 has two solutions λ+ = 1+
√
17

8 and

λ− = 1−
√
17

8 and we proceed as in solution 1 to get Pn =
(1 +

√
17 )n−1 − (1−

√
17 )n−1

8n−1
√

17
, which

multiplied by 3 · 22n−1 gives the desired result. 2



Problem C.1.
Let fn : [0, 1]→ R be given by the formula

fn(x) =
1

n+ 1

(
1 +

x

1

)
·
(

1 +
x

2

)
· . . . ·

(
1 +

x

n

)
for all n ∈ N and x ∈ [0, 1]. Show that the sequence (fn) converges uniformly on the interval
[0, x] for each 0 < x < 1. Find the pointwise limit of the sequence of functions.

Solution:
By the AM-GM inequality

fn(x) =
1

n+ 1

(
1 +

x

1

)
·
(

1 +
x

2

)
· . . . ·

(
1 +

x

n

)
6

1

n+ 1

(
1 +

x(1 + 1
2 + . . .+ 1

n )

n

)n
for every 0 6 x 6 1.
In the sequel we will need the folowing two well known facts
Lemma

(a) For all n ∈ N and x > 0, we have (
1 +

x

n

)n
6 ex.

(b) For every n ∈ N, we have
1 +

1

2
+ . . .+

1

n
6 1 + ln(n).

Consequently

0 6 fn(x) 6
1

n+ 1

(
1 +

x(1 + 1
2 + . . .+ 1

n )

n

)n
6
ex(1+ln(n))

n+ 1
= ex

(
nx

n+ 1

)
= ex

(
n

n+ 1

)x(
1

n+ 1

)1−x

for every 0 6 x 6 1. Let 0 < y < 1. Then

sup
06x6y

|fn(x)| 6 ey
(

n

n+ 1

)0(
1

n+ 1

)1−y

6
ey

(n+ 1)1−y
.

This shows that
lim
n→∞

sup
06x6y

|fn(x)| = 0.

It is easy to check that
lim
n→∞

fn(1) = 1.

Therefore

lim
n→∞

fn(x) =

{
1 if x = 1

0 if 0 6 x < 1

for every 0 6 x 6 1.
2

Remark
] It’s quicker to note immediately that 1 +

x

k
< ex/k since x is positive and we have part of the

Taylor series of exp.



Problem C.2.

Calculate the value of the integral
∞∫
0

cosx2 e−x
2

dx .

Solution:
Let’s denote the integral in question by I. Thus

I2 =

∞∫
0

∞∫
0

cosx2 cos y2 e−x
2−y2 dxdy =

∞∫
0

∞∫
0

cos(x2 + y2)− cos(x2 − y2)

2
e−(x

2+y2) dxdy

=
1

2

π
2∫

0

dt

∞∫
0

(
cos r2 + cos(r2 cos 2t)

)
e−r

2

rdr =
1

4

π
2∫

0

dt

∞∫
0

(
cos s+ cos(s cos 2t)

)
e−s ds

=
1

4

π
2∫

0

(1

2
+

1

1 + cos2 2t

)
dt =

1

4

(π
4

+
π

2
√

2

)
=

1 +
√

2

16
π .

where
∞∫
0

cos(ax) e−x dx =− cos(ax)e−x
∣∣∣∞
0
− a

∞∫
0

sin(ax) e−x dx

=1 + a
[

sin(ax)e−x
]∞
0
− a2

∞∫
0

cos(ax)e−x dx,

hence
∞∫
0

cos(ax) e−x dx =
1

1 + a2
, and

π
2∫

0

1

1 + cos2 2t
dt =

∞∫
0

1

x2 + 2
dx =

π

2
√

2

by substitution x = tan t.
Finaly

I =

∞∫
0

cosx2 e−x
2

dx =

√
1 +
√

2

4

√
π .

2

Solution 2.:
We have

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!

hence
∞∫
0

cos(x2) e−x
2

dx =

∞∑
n=0

∞∫
0

(−1)n
x4n

(2n)!
e−x

2

dx .



Now

1

(2n)!

∞∫
0

x4n e−x
2

dx =
1

2(2n)!

∞∫
0

x4n−1 e−x
2

2xdx

=
4n− 1

2(2n)!

∞∫
0

x4n−2 e−x
2

dx

...

=

2n∏
k=1

(2k − 1)

22n(2n)!

∞∫
0

e−x
2

dx =
(4n− 1)!!

(4n)!!

√
π

2
dx .

On the other hand
√

1 + x =

∞∑
n=0

(−1)n
(2n− 1)!!

(2n)!!
xn

2



Problem E.1.
Let n ∈ N, n > 2 and a1, . . . , an be positive real numbers such that a1 a2 · · · an = 1. Show that

n∑
k=1

ln(ak)

1 + a2k
6 0.

Solution:
Without loss of generality we may assume that a1 6 . . . 6 an. Then

ln(a1) 6 . . . 6 ln(an),

1

1 + a21
> . . . >

1

1 + a2n
,

n∑
k=1

ln(ak) = 0,

j∑
k=1

ln(ak) 6 0

for every 1 6 j < n. According to Abel’s lemma we obtain

−
n∑
k=1

ln(ak)

1 + a2k
=

1

1 + a21

(
− ln(a1)) +

n∑
k=2

1

1 + a2k

( k∑
j=1

(− ln(aj))−
k−1∑
j=1

(− ln(aj))

)

=

n−1∑
k=1

(
1

1 + a2k
− 1

1 + a2k+1

)( k∑
j=1

(− ln(aj))

)
> 0.

Equality holds only for a1 = · · · = an = 1. 2

Solution 2.:
We have 1 + a2 < 1 + a2b2 < 1 + b2 for 0 < a < 1 < b, hence

ln a

1 + a2
+

ln b

1 + b2
<

ln a

1 + a2b2
+

ln b

1 + a2b2
=

ln(ab)

1 + (ab)2
.

Iterating gives immediately the desired result. 2



Problem E.2.
Let n > 2 be an integer and x1, . . . , xn distinct real numbers. Express in the simplest form the
sum

n∑
i=1

xni∏
j 6=i

(xi − xj)
.

Solution:
The series is equal to

n∑
i=1

xni∏
j 6=i

(xi − xj)
= x1 + · · ·+ xn .

We will procede by induction with respect to n.
If n = 2 we have

2∑
i=1

x2i∏
j 6=i

(xi − xj)
=

x21
(x1 − x2)

+
x22

(x2 − x1)
=
x21 − x22
x1 − x2

= x1 + x2 .

Let now
fn(x1, . . . , xn) =

n∑
i=1

xni∏
j 6=i

(xi − xj)
,

and assume that the equality fn(x1, . . . , xn) = x1 + · · ·+ xn holds for some n > 2.
We have

xn+1
i∏

j 6=i
(xi − xj)

=
xni

n∏
26j 6=i

(xi − xj)

xi
(xi − x1)(xi − xn+1)

=
xni

n∏
26j 6=i

(xi − xj)

xi(x1 − xn+1)

(xi − x1)(xi − xn+1)(x1 − xn+1)

=
xni

n∏
26j 6=i

(xi − xj)

x1(xi − xn+1)− xn+1(xi − x1)

(xi − x1)(xi − xn+1)(x1 − xn+1)

=
xni

n∏
26j 6=i

(xi − xj)

(
x1

(xi − x1)(x1 − xn+1)
+

xn+1

(xi − xn+1)(xn+1 − x1)

)

=
x1

x1 − xn+1

xni
n∏

16j 6=i
(xi − xj)

+
xn+1

xn+1 − x1
xni

n+1∏
26j 6=i

(xi − xj)
.

Hence

fn+1(x1, . . . , xn+1) =
xn+1
1

n+1∏
j=2

(x1 − xj)
+

n∑
i=2

xn+1
i∏

j 6=i
(xi − xj)

+
xn+1
n+1

n∏
j=1

(x1 − xj)

=
x1

x1 − xn+1

n∑
i=1

xn1
n∏

16j 6=i
(xi − xj)

+
xn+1

xn+1 − x1

n+1∑
i=2

xnn+1

n+1∏
26j 6=i

(xi − xj)

=
x1

x1 − xn+1
fn(x1, . . . , xn) +

xn+1

xn+1 − x1
fn(x2, . . . , xn+1)

=
x21 + (x1 − xn+1)(x2 + · · ·+ xn)− x2n+1

x1 − xn+1

=x1 + · · ·+ xn+1 ,



what finishes the proof. 2

Remark
The problem can also be solved by interpreting it as Lagrange interpolation.



Problem G.1.
Let A,B,C,D be four different points on a straight line, in that order. Show that there exists
a square such that two of these points lie on the sides of the square, and two other points lie
on the extensions of two other sides of the square (see figure below).
Discuss the existence and number of different solutions.

Solution:
First, let us note that no vertex of the square can coincide with points A,B,C orD (otherwise
two of the points A,B,C or D should have coincided). Secondly, the points on the extensions
of the sides must lie outside the square, so they cannot be between points that lie on the sides
of the square. Thus, the points A andDmust lie on the extensions of the sides, and the points
B and C must lie on the sides of the square.
On the other hand, consider two pairs of parallel lines containing the sides of a possible square.
That is, these pairs are determined either by the pairs A,C and B,D, or by the pairs A,D and
B,C (the points B and A lie, respectively, on the side and on the extension of the next side
perpendicular to the first; so they cannot belong to the pair of parallel lines in question).

Without loss of generality, we can now choose one of the arrangements, for instance pairs A,C
and B,D. Let us consider all possible pairs of parallel lines passing through these points and
perpendicular to each other. Each such arrangement is uniquely determined by the angle
between the line ABCD and the first pair of straight lines, which varies from 0 to π (at the
same time, the slope of the second pair varies from−π2 to π

2 ). The ratio of the distance between
the straight lines in one pair and the distance in the other pair is a continuous function of the
slope, and varies continuously from 0 through infinity back to 0. Twice, therefore, the ratio
equals 1, which means that in this case the pairs of parallel lines form a square.
In the second case, we can also obtain two possible squares in an analogous way, so finaly the
solution always exists and each time there are four possible squares. 2

Remark
An equivalent way to solve this is to draw all the appropriate Thales circles and let a point
wander along one of them Then to draw the lines through appropriate points on the given line
and check the ratio of the sides of the resulting rectangle.



Problem G.2.
Let n ∈ N, n > 1. Let Xn be the vector space generated by the set of all permutation matrices
in the spaceMn×n of all n× n real matrices. Find the dimension of the space Xn.

Remark
For a given permutation σ of the set {1, . . . , n}, the permutation matrix Aσ = [ak,m] ∈ Mn×n is
defined by the formula

ak,m =

{
1 if σ(k) = m;
0 if σ(k) 6= m,

for all 1 6 k,m 6 n.

Solution:
The answer is dim(Xn) = n2 − 2(n− 1) = (n− 1)2 + 1.
Suppose that n = 2. We have two permutation matrices(

1 0
0 1

)
and

(
0 1
1 0

)
Consequently dim(X2) = 2.
Suppose now that n > 2. Let x∗1, . . . , x∗n, y∗1 , . . . , y∗n : Mn×n → R be linear functionals given by
the formulas

x∗j ([ak,m]) =

n∑
k=1

aj,k i y∗j ([ak,m]) =
n∑
k=1

ak,j

for all 1 6 j 6 n and [ak,m] ∈ Mn×n. We have x∗j
(
Aσ
)

= 1 and y∗j
(
Aσ
)

= 1 for all 1 6 j 6 n
and every permutation matrix Aσ. Hence linear functionals x∗1−x∗n,. . . , x∗n−1−x∗n, y∗1−y∗n,. . . ,
y∗n−1− y∗n anihilate space Xn. We will show that those functionals are linearly independent in
the dual space ofMn×n.
Let Ei,j = [ak,m] ∈Mn×n be given by

ak,m =

{
1 if (k,m) = (i, j)

0 if (k,m) 6= (i, j)

for all 1 6 i, j 6 n. Suppose that a1, . . . , an−1, b1, . . . , bn−1 ∈ R are such that(n−1∑
j=1

aj(x
∗
j − x∗n)

)
+

(n−1∑
j=1

bj(y
∗
j − y∗n)

)
= 0.

Then ((n−1∑
j=1

aj(x
∗
j − x∗n)

)
+

(n−1∑
j=1

bj(y
∗
j − y∗n)

))((n−1∑
j=1

Ek,j

)
− Ek,n

)
= (n− 2)ak = 0

for every 1 6 k 6 n − 1. Similar consideration shows that bk = 0 for every 1 6 k 6 n − 1.
Consequently dim(Xn) 6 n2 − 2(n− 1) = (n− 1)2 + 1.
We will now show the inequality in the other direction by induction on n, which will complete
the proof of the fact that dim(Xn) = n2 − 2(n− 1) = (n− 1)2 + 1.
The first step has already been done. Suppose now that dim(Xn) > (n − 1)2 + 1 for some
n > 1. Thus we have permutations σ̂1, . . . , σ̂(n−1)2+1 of the set {1, . . . , n} such that matrices
Aσ̂1 , . . . , Aσ̂(n−1)2+11

are linearly independent in the space Mn×n. We define a new collection
of permutations, this time of the set {1, . . . , n+ 1}. Let σj be such that σj(k) = σ̂j(k) and
σj(n + 1) = n + 1 for all 1 6 j 6 (n − 1)2 + 1 and 1 6 k 6 n. Let ηj be such that ηj(n + 1) = 1
and ηj(j) = n + 1 for 1 6 j 6 n. Let ζj be such that ζj(n + 1) = j for 2 6 j 6 n. The values of
the permutations ηj and ζj for the other arguments do not matter.
We will show that matrices Aσ1

, . . . , Aσ(n−1)2+1
, Aη1 , . . . , Aηn , Aζ2 , . . . , Aζn are linearly indepen-

dent in the space Mn+1×n+1. Let coefficients a1, . . . , a(n−1)2+1, b1, . . . , bn, c2, . . . , cn ∈ R be such
that ((n−1)2+1∑

j=1

ajAσj

)
+

( n∑
j=1

bjAηj

)
+

( n∑
j=2

cjAζj

)
= 0.



The n+1-th row of the matrix on the left-hand side of the above equality is as follows(
n∑
j=1

bj , c2, . . . cn,
(n−1)2+1∑

j=1

aj

)

So c2 = . . . = cn = 0. Consequently, the n+1-th column of the same matrix takes the form
b1
...
bn

(n−1)2+1∑
j=1

aj

 .

Hence b1 = . . . = bn = 0. The equality a1 = . . . = a(n−1)2+1 = 0 follows from the induction
assumption as

(n−1)2+1∑
j=1

ajAσj =


(n−1)2+1∑

j=1

ajAσ̂j

0
...
0

0 · · · 0
(n−1)2+1∑

j=1

aj

 = 0,

what finishes the proof of the inequality

dim(Xn+1) >
(
(n− 1)2 + 1

)
+ n+ (n− 1) = n2 + 1 .

2

Remark
We can solve this by looking at a linear combination of permutation matrices in the span,
changing the coefficient of the identity such that the sum of the coefficients is 1 and then adding
an appropriate multiple of the identity to get the same result. This means that this space is
spanned by the identity matrix and the space consisting of “stochastic” matrices without the
positivity condition. “Stochastic” matrices can be uniquely defined by freely choosing the entries
in the upper left (n−1)×(n−1) submatrix and then making sure that sums of all row and column
are 1. Since the identity matrix is clearly linearly independent from this subspace we get the
dimension equal to (n− 1)2 + 1.



Problem P.1.
Find all n ∈ N, n > 2 for which there exist Lebesgue measurable subsets A1, . . . , An of [0, 1]
such that

(1) λ(Ak) = λ(A1) > 0 for every 1 6 k 6 n and

(2)
∑n
k=1 λ(Ak) =

∑
16j<k6n λ(Aj ∩Ak)

where λ is the Lebesgue measure on [0, 1].

Solution:
For n = 2 and all measurable sets A1, A2 ⊂ [0, 1] we have

λ(A1 ∩A2) 6 λ(A1) < λ(A1) + λ(A2).

Therefore for n = 2 such sets does not exist.
For n = 3, we put A1 = A2 = A3 = A where A is any measurable subset of [0, 1] such that
λ(A) > 0. Then

3∑
k=1

λ(Ak) = 3λ(A) =
∑

16j<k63

λ(Aj ∩Ak).

Let now n > 4. We will need the following well known fact
Lemma
For any probability space (Ω,Σ, P ) and random variables f1, . . . , fn on this space, we find borel
measurable functions g1, . . . , gn on [0, 1] with the same joint probability distribution.
Therefore, we find independent random variables (=borel functions) h1, . . . , hn on the proba-
bility space ([0, 1],B[0,1], λ) such that

λ(hk = 1) =
2

n− 1
, and λ(hk = 0) =

n− 3

n− 1

for every 1 6 k 6 n. We put
Ak = h−1k ({1})

for every 1 6 k 6 n. Consequently
n∑
k=1

λ(Ak) =
2n

n− 1
=

(
n

2

)
22

(n− 1)2
=

∑
16j<k6n

λ(Aj ∩Ak).

2



Problem P.2.
In a volleyball match, each ball is served by one team and ends with one team winning one
point. The next ball is served by the team that won the previous point. Typically, the probabil-
ity p of the serving team to win a point is different (smaller) than to lose a point. We assume
that the results of each ball are independent. A set ends when one team has at least 25 points
and at least 2 points more than the other team.
At some moment the score is 24:22 for the team that won the last point. What is the expected
number of points of the team that will be victorious in this set?

Solution:
Let us denote by Si the number of balls to the end of the set when serving team has i points
more then the other one. (For example the question of the problem is to find ES2). Let W
means winning of serving team (P (W ) = p). We can formulate following relations:

ES2 = P (W )E(S2|W ) + P (W ′)E(S2|W ′) = p · 1 + (1− p) · (1 + ES−1), (34.1)
ES1 = P (W )E(S1|W ) + P (W ′)E(S1|W ′) = p · 1 + (1− p) · (1 + ES0), (34.2)
ES0 = 1 + E(S1), (34.3)

ES−1 = P (W )E(S−1|W ) + P (W ′)E(S−1|W ′) = p · (1 + ES0) + (1− p) · 1. (34.4)

For example: in (34.3) no matter which team wins a ball, afterwards serving team has one
point more; in (34.1) if serving team wins a ball, the game ends, but if not, the other team
serves and has one point less. We can see that only two expected values are present in equa-
tions (34.2) and (34.3), so assuming x = ES0 and y = ES1 we have{

y = p+ (1− p)(1 + x)

x = 1 + y

so y = p+ (1− p)(2 + y) = (2− p) + y− py ⇐⇒ (2− p) = py ⇐⇒ y = 2−p
p = 2

p − 1. Thus x = 2
p .

Further (see (34.4))ES−1 = p(1+x)+1−p = 3 and (from (34.1))ES2 = p+(1−p)(1+3) = 4−3p.
Formally one should check that expected values are finite. But if we denote Ln = probability
of the game longer then n, then Ln+2 ≤ (1− p2)Ln for n > 1 (if serving team wins 2 balls the
game ends) end we know, that

ES2 =

∞∑
n=1

Ln < L1 + (L2 + L3)

∞∑
n=1

(1− p2)n = L1 + (L2 + L3)
1

p2
<∞.

2

Solution 2.:
Let e be the expected number of further points from a score of x : x with x at least 24 (e is ES0

in the shortlist solution and I agree with this value and its calculation). It can be easily seen
(for example by drawing a tree diagram with the scores) that

e = 1 + p · 1 + (1− p)(1 + e)

which gives pe = 2 and e = 2
p . Let E be the expected number of further points from the score

24:24 with “24” serving. Then

E = 1 + (1− p)(1 + pe) = 1 + (1− p)(1 + 2) = 4− 3p

as in the proposed solution. 2

Remark
The answer I have found is 26− p. The random variable which expectation we are looking for,
has mixed Dirac distribution at 25 and geometric distribution.


