ISTCiM 2024

PROBLEMS

INDIVIDUAL PART

(A) Algebra & Combinatorics

Problem A

Let $(R, +, \cdot)$ be a commutative ring. If I and J are two ideals of R then prove that

$$\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$

and find n such that

$$n \mathbb{Z} = \sqrt{8\mathbb{Z}} \cap \sqrt{11\mathbb{Z}} \cap \sqrt{2024\mathbb{Z}}.$$

Remark

The radical \sqrt{I} of an ideal I is an ideal which consists of all elements in the ring with some power in I, i.e.

$$\sqrt{I} = \left\{ a \in R : \quad \stackrel{d}{\rightrightarrows} \quad a^n \in I \right\}.$$

(C) Calculus & Mathematical Analysis

Problem C Prove that

$$\sum_{n=1}^{\infty} \frac{n^{2024}}{n!} \notin \mathbb{Q}$$

(E) Equations & Inequalities

Problem E Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(A \triangle B) = f(A) \triangle f(B),$$

where \triangle is the symmetric difference of sets: $A \triangle B = (A \setminus B) \cup (B \setminus A)$. **Remark** *We define* $f(A) = \{x \in \mathbb{R}: \exists_{a \in A} f(a) = x\}$ *for any subset* $A \subset \mathbb{R}$.

(G) Geometry & Linear Algebra

Problem G

Let x_n denote the maximal determinant of an $n \times n$ matrix with entries equal to ± 1 . Does the sequence $\sqrt[n]{x_n}$ have a finite limit?

(P) Set Theory & Probability

Problem P

Let (X, \preccurlyeq) be a partially ordered set such that for all subsets $A, B \subset X$ the following property is satisfied

$$\left(\bigvee_{\substack{x \in A \\ y \in B}} x \preccurlyeq y \right) \Longrightarrow \underset{z \in \mathcal{X}}{\exists} \left(\left(\bigvee_{x \in A} x \preccurlyeq z \right) \land \left(\bigvee_{y \in B} z \preccurlyeq y \right) \right).$$

- (i) Show that every order preserving function $f: X \to X$ (i.e. $\bigvee_{x,y \in X} x \preccurlyeq y \Rightarrow f(x) \preccurlyeq f(y)$) has a fixed point (i.e. there is an $x_0 \in X$ such that $f(x_0) = x_0$).
- (ii) Give an example of X and f, where the property is satisfied only for non-empty subsets A, B of X and f has no fixed point.