PROBLEMS

Individual part

(A) Algebra & Combinatorics

Problem A

Let $(R, +, \cdot)$ be a commutative ring. If I and J are two ideals of R then prove that

$$
\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}
$$

and find n such that

$$
n\mathbb{Z} = \sqrt{8\mathbb{Z}} \cap \sqrt{11\mathbb{Z}} \cap \sqrt{2024\mathbb{Z}}.
$$

Remark

кетагк
The radical √I of an ideal I is an ideal which consists of all elements in the ring with some *power in* I*, i.e.* √

$$
\sqrt{I} = \{ a \in R : \quad \mathop{\exists} \limits_{n \geqslant 1} a^n \in I \}.
$$

(C) Calculus & Mathematical Analysis

Problem C Prove that

$$
\sum_{n=1}^{\infty} \frac{n^{2024}}{n!} \notin \mathbb{Q}.
$$

(E) Equations & Inequalities

Problem E Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$
f(A \triangle B) = f(A) \triangle f(B),
$$

where \triangle is the symmetric difference of sets: $A \triangle B = (A \setminus B) \cup (B \setminus A)$. **Remark** We define $f(A) = \{x \in \mathbb{R}: \int_{a \in A} f(a) = x \}$ for any subset $A \subset \mathbb{R}$.

(G) Geometry & Linear Algebra

Problem G

Let x_n denote the maximal determinant of an $n \times n$ matrix with entries equal to ± 1 . Does the sequence $\sqrt[n]{x_n}$ have a finite limit?

(P) Set Theory & Probability

Problem P

Let (X, \preceq) be a partially ordered set such that for all subsets $A, B \subset X$ the following property is satisfied \overline{a}

$$
\left(\bigvee_{\substack{x \in A \\ y \in B}} x \preccurlyeq y\right) \Longrightarrow \exists \atop z \in X} \left(\left(\bigvee_{x \in A} x \preccurlyeq z\right) \wedge \left(\bigvee_{y \in B} z \preccurlyeq y\right)\right).
$$

- (i) Show that every order preserving function $f: X \to X$ (i.e. $\bigvee_{x,y \in X} x \preccurlyeq y \Rightarrow f(x) \preccurlyeq f(y)$) has a fixed point (i.e. there is an $x_0 \in X$ such that $f(x_0) = x_0$).
- (ii) Give an example of X and f , where the property is satisfied only for non-empty subsets A, B of X and f has no fixed point.

SOLUTIONS

Individual part

(A) Algebra & Combinatorics

Problem A [*Proposed by*: Pirmyrat Gurbanov and Murat Chashemov *from*: International University for the Humanities and Development]

Let $(R, +, \cdot)$ be a commutative ring. If I and J are two ideals of R then prove that

$$
\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}
$$

and find n such that

$$
n\mathbb{Z} = \sqrt{8\mathbb{Z}} \cap \sqrt{11\mathbb{Z}} \cap \sqrt{2024\mathbb{Z}}.
$$

Remark

кетагк
The radical √I of an ideal I is an ideal which consists of all elements in the ring with some *power in* I*, i.e.*

$$
\sqrt{I} = \{ a \in R : \overrightarrow{\exists}_{n \geq 1} a^n \in I \}.
$$

Solution:

Solution:
First, we claim that, if $I\subset J,$ then $\sqrt{I}\subset$ $J.$ Indeed, if $x \in$ √ it, if $I \subset J$, then $\sqrt{I} \subset \sqrt{J}$. Indeed, if $x \in \sqrt{I}$, then there exists *n* such that First, we claim that, if $I \subset J$, then $\forall I \subset \forall J$. Indeed, if $x \in$
 $x^n \in I \subset J$ and $x \in \sqrt{J}$, from which it follows that $\sqrt{I} \subset \sqrt{J}$. √

 $x^{\alpha} \in I \subset J$ and $x \in \sqrt{J}$, from which it follows that $\sqrt{I} \subset \sqrt{J}$,
Since $I \cap J \subset I$ and $I \cap J \subset J$, then $\sqrt{I \cap J} \subset \sqrt{I}$ and $\sqrt{I \cap J} \subset$ Since $I \cap J \subset I$ and $I \cap J \subset J$, then $\sqrt{I \cap J} \subset \sqrt{I}$ and $\sqrt{I \cap J} \subset \sqrt{J}$, from which it follows that $I \cap J \subset \sqrt{I} \cap \sqrt{J}$. Now, suppose $x \in \sqrt{I} \cap \sqrt{J}$. Then, there exist two integers m, n such that $x^n \in I$ and $x^m \in J$. On account of the definition of an ideal, we have $x^n \cdot x^m$ belongs to I and to $x^{n} \in I$ and $x^{m} \in J$. On account of the definition of an ideal, we have $x^{n} \cdot x^{m}$ belongs to I and to J . So, $x^{n} \cdot x^{m} = x^{n+m} \in I \cap J$. Hence, x is an element of $\sqrt{I \cap J}$ and $\sqrt{I} \cap \sqrt{J} \subset \sqrt{I \cap J}$. From J.So, $x^{\alpha} \cdot x^{\alpha} = x^{\alpha + \alpha} \in I \cap J$. Hence, x is an element
the preceding, we get $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$, as desired.

the preceding, we get $\sqrt{I \cap J} = \sqrt{I \cap \sqrt{J}}$, as desired.
As for the second question, in Z we have that $\sqrt{2024 \mathbb{Z}}$ is the set of integers x such that there exists a power x^n which is a multiple of 2024. Since $2024 = 2^3 \cdot 11 \cdot 23$ then a power of x, say x^n , will be divisible by these factors if and only if x is divisible by $2 \cdot 11 \cdot 23 = 506$, and one have will be divisible by these factors if and only if x is divisible it that $\sqrt{2024\mathbb{Z}} = 506\mathbb{Z}$. Similarly, $\sqrt{11\mathbb{Z}} = 11\mathbb{Z}$ and $\sqrt{8\mathbb{Z}} = 2\mathbb{Z}$. Finally, we get

$$
\sqrt{8\,\mathbb{Z}} \cap \sqrt{11\,\mathbb{Z}} \cap \sqrt{2024\,\mathbb{Z}} = 2\,\mathbb{Z} \cap 11\,\mathbb{Z} \cap 506\,\mathbb{Z} = 506\,\mathbb{Z}
$$

as $506 Z \subset 2 Z$ and $506 Z \subset 11 Z$ (both 2 and 11 devide 506).

(C) Calculus & Mathematical Analysis

Problem C [*Proposed by*: Robert Skiba *from*: Nicolaus Copernicus University in Toruń] Prove that

$$
\sum_{n=1}^{\infty} \frac{n^{2024}}{n!} \notin \mathbb{Q}.
$$

Solution:

We put

$$
x_k:=\frac{1}{e}\sum_{n=1}^\infty \frac{n^k}{n!} \text{ for all } k\in\mathbb{N}.
$$

It is clear that

$$
x_1 = \frac{1}{e} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = \frac{1}{e} \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{e} \cdot e = 1.
$$

Now we will show by induction that $x_k \in \mathbb{N}$ for all $k \in \mathbb{N}$. Indeed, let us assume that $x_1, ... x_k \in$ N. We will show that $x_{k+1} \in \mathbb{N}$. We have

$$
e \cdot x_{k+1} = \sum_{n=1}^{\infty} \frac{n^{k+1}}{n!} = \sum_{n=1}^{\infty} \frac{n^k}{(n-1)!} = \sum_{n=0}^{\infty} \frac{(n+1)^k}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} (n+1)^k
$$

=
$$
\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{m=0}^{k} {k \choose m} n^m = \sum_{n=0}^{\infty} \sum_{m=0}^{k} {k \choose m} \frac{n^m}{n!} = \sum_{m=0}^{k} \sum_{n=0}^{\infty} {k \choose m} \frac{n^m}{n!}
$$

=
$$
\sum_{m=0}^{k} {k \choose m} \sum_{n=0}^{\infty} \frac{n^m}{n!} = e + \sum_{m=1}^{k} {k \choose m} \sum_{n=0}^{\infty} \frac{n^m}{n!} = e + \sum_{m=1}^{k} {k \choose m} e x_m
$$

=
$$
e \left(1 + \sum_{m=1}^{k} {k \choose m} x_m \right),
$$

which implies that

$$
x_{k+1} = 1 + \sum_{m=1}^{k} \binom{k}{m} x_m \in \mathbb{N}.
$$

Thus we have proved that $x_k \in \mathbb{N}$ for all k, and hence

$$
\sum_{n=1}^{\infty} \frac{n^{2024}}{n!} = e \cdot x_{2024} \notin \mathbb{Q}.
$$

This completes the solution.

Solution 2:

Let $f_k(x) = (\ldots ((e^x x)'x)' \ldots x)'$. Then $f_k(x) = e^x P_k(x)$, where P_k is a polynomial of degree k k times

with integer coefficients.

Proof: by induction on k.

We have $f_1(x) = e^x(x+1)$. If $f_k(x) = e^x P_k(x)$, then

$$
f_{k+1}(x) = (e^x P_k(x) x)' = e^x P_k(x) x + e^x P'_k(x) x + e^x P_k(x)
$$

= $e^x (P_k(x) x + P'_k(x) x + P_k(x)),$

hence $P_{k+1}(x) = P_k(x) x + P'_k(x) x + P_k(x)$. We have

$$
f_k(x) = \sum_{n=1}^{\infty} \frac{n^k}{n!} x^{k-1}.
$$

by simply differentiation term by term, as all series are absolutely convergent on the whole R. As P_{2024} has integer coefficients, $P_{2024}(1) \in \mathbb{Z}$. Hence

$$
\sum_{n=1}^{\infty} \frac{n^{2024}}{n!} = f_{2024}(1) = e P_{2024}(1) \notin \mathbb{Q}.
$$

(E) Equations & Inequalities

Problem E [*Proposed by*: Leszek Pieniążek *from*: Jagiellonian University] Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$
f(A \triangle B) = f(A) \triangle f(B),
$$

where \triangle is the symmetric difference of sets: $A \triangle B = (A \setminus B) \cup (B \setminus A)$. **Remark** We define $f(A) = \{x \in \mathbb{R}: \int_{a \in A} f(a) = x \}$ for any subset $A \subset \mathbb{R}$.

Solution:

One easily checks, that f must be injective (for sets $A = \{a\}$ and $B = \{b\}$, with $a \neq b$). In an obvious way every injection f fulfils the conditions, as

$$
f(A \cup B) = f(A) \cup f(B), \qquad f(A \cap B) = f(A) \cap f(B), \qquad f(A \setminus B) = f(A) \setminus f(B)
$$

for any sets A and B .

(G) Geometry & Linear Algebra

Problem G [*Proposed by*: Robert Skiba *from*: Nicolaus Copernicus University in Toruń] Let x_n denote the maximal determinant of an $n \times n$ matrix with entries equal to ± 1 . Does the sequence $\sqrt[n]{x_n}$ have a finite limit?

Solution:

The answer is negative. We will construct a sequence (A_n) of $2^n \times 2^n$ matrices such that

$$
\sqrt[2^n]{\det A_n} \xrightarrow[n \to \infty]{} \infty.
$$

Indeed, let $A_0 = (1)$ and

$$
A_{n+1} = \left(\begin{array}{cc} A_n & A_n \\ -A_n & A_n \end{array}\right)
$$

 \Box

for all $n \in \mathbb{N}$. Then

$$
\det A_{n+1} = \det \begin{pmatrix} A_n & A_n \ -A_n & A_n \end{pmatrix} = \det \begin{pmatrix} A_n & A_n \ 0 & 2A_n \end{pmatrix} = 2^{2^n} (\det A_n)^2.
$$

One can show by induction that

$$
\det A_n = 2^{n2^{n-1}} \text{ for all } n \ge 0.
$$

Finally, one has

$$
\sqrt[2^n]{\det A_n} = \sqrt[2^n]{2^{n2^{n-1}}} = 2^{n/2} \xrightarrow[n \to \infty]{} \infty.
$$

This completes the solution. \Box

(P) Set Theory & Probability

Problem P [*Proposed by*: Marcin J. Zygmunt *from*: University of Silesia, Katowice (Poland)]

Let (X, \preccurlyeq) be a partially ordered set such that for all subsets $A, B \subset X$ the following property is satisfied

$$
\left(\bigvee_{\substack{x \in A \\ y \in B}} x \preccurlyeq y\right) \Longrightarrow \exists \atop z \in X} \left(\left(\bigvee_{x \in A} x \preccurlyeq z\right) \wedge \left(\bigvee_{y \in B} z \preccurlyeq y\right)\right)
$$

- (i) Show that every order preserving function $f: X \to X$ (i.e. $\bigvee_{x,y \in X} x \preccurlyeq y \Rightarrow f(x) \preccurlyeq f(y)$) has a fixed point (i.e. there is an $x_0 \in X$ such that $f(x_0) = x_0$).
- (ii) Give an example of X and f , where the property is satisfied only for non-empty subsets A, B of X and f has no fixed point.

Solution:

An (i) Let $C = \Big\{x \in \mathrm{X}\colon\, x \preccurlyeq f(x)\Big\}$ and let $D = \Big\{x \in \mathrm{X}\colon\, \big\forall\, y \preccurlyeq x\Big\}.$ By the property there exists $z_o \in \mathrm{X}$ such that $\bigvee\limits_{x \in C} x \preccurlyeq z_0$ and $\bigvee\limits_{y \in D} z_0 \preccurlyeq y$. Note that if the set C were empty, then D would be equal to $X,$ so by the property z_0 would have to be the smallest element of the set $X.$ In that case, $z_0 \preccurlyeq f(z_0) \in X$, which means that $z_0 \in C$. Hence $C \neq \emptyset$.

We will show that $f(z_0) = z_0$, or more precisely $f(z_0) \preccurlyeq z_0$ and $f(z_0) \succeq z_0$.

We have $\bigvee_{x\in C} x \preccurlyeq z_0 \Rightarrow \bigvee_{x\in C} x \preccurlyeq f(x) \preccurlyeq f(z_0)$, hence $f(z_0) \in D$. Moreover, as $\bigvee_{y\in D} z_0 \preccurlyeq y$ then $z_0 \preccurlyeq f(z_0)$, hence $z_0 \in C$.

On the other hand applying function f to $x \preccurlyeq f(x)$ gives $f(x) \preccurlyeq f(f(x))$ for such x's, so $f(C) \subset C$ and $f(z_0) \in C$. Thus $f(z_0) \preccurlyeq z_0$.

So by the antisymmetry property of ordering \preccurlyeq we get $f(z_0) = z_0$.

Ad (ii) One can observe that the condition for non-empty sets will always be satisfied whenever each subset of X, which is bounded above (respectively, bounded below), has the largest (respectively, smallest) element. An example of such a set are the integers with the usual order (\mathbb{Z}, \le) . An order-preserving function $f : \mathbb{Z} \to \mathbb{Z}$ that does not have a fixed point is, for example, the shift $f(n) = n+1$.

Remark

In the analogical way it can be proved the existence of sup *and* inf *for all subsets in* X*. Then the thesis follows from the well known version of the Banach's Fixpoint Lemma.*

 \Box

.